知识图谱发展报告(2022)

首页 地方资讯 正文

近年来,随着人工智能特别是大数据、深度学习和大规模预训练模型的快速发展,知识图谱的理论、方法和应用也有了很大进展。 


在知识表示和建模中,知识图谱表示形式更加多样化,从单一语言和符号表示的知识图谱,到多语言和多模态的知识图谱;从结构化知识表示发展到与半结构化和非结构化数据融合的概念-实体-上下文一体化知识表示,从符号知识表示到融合符号和数值的知识表示。在知识获取方面,低资源、真实场景下的知识获取技术也有了长足进步,由传统限定领域的知识抽取,到如今开放领域的多类别知识抽取;由基于知识库的关系获取,到以知识为指导的面向大规模预训练技术的关系获取;由粗粒度有监督学习到细粒度小样本学习,以及由单一模态的概念抽取到跨模态的联合学习。

  免费阅读6页,下载阅读完整文档.
来源: 中国中文信息学会&语言与知识计算专委会,报告厅推荐阅读,版权归作者所有。文章内容仅代表作者独立观点,不代表报告厅立场,转载目的在于传递更多信息。如涉及作品版权问题,请联系我们删除或做相关处理!

加入我们

报告厅主要包含智慧城市、数字经济、工业互联网、中台战略、物联网、大数据、区块链、5G、元宇宙、碳中和、前沿技术等十二个专题,上万份热门报告可供学习使用。
温馨提示:本站报告存储于“知识星球”平台,请扫码加入后,方可进行下载。

热门报告